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Abstract

Considered in this paper is the problem of free vibration of a beam that has undergone a large static deflection. The

nonlinear equations of motion for the beam are derived first. The equations are then decomposed into a set of nonlinear

differential equations for the static deflection and a set of linear differential equations for the vibrational motion of the

beam. The coefficients of the vibration equations consist of the beam’s static deflection. The nonlinear differential

equations are solved analytically to obtain the static deflection. The vibration equations are solved by expanding

the displacements in a power series. Coefficients of the power series are constructed analytically through a recursive

relationship. The natural frequencies of the beam under large static bending are determined by solving a 3� 3 eigenvalue

problem. Substitution of the eigenvalues and eigenvectors into the power-series expansion of the displacements yields

the corresponding modes of vibration. Several numerical examples are given to illustrate the solution procedure.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

In a number of emerging technical areas, there is a need to bend thin plates (beams) into various shapes. For
example, optical fibers are used in various communication cables. To have high reliability and performance,
deformation of the thin optical fibers near the optical/electrical connectors must be considered. In the
electronic packaging area, more and more flexible circuit boards are being used for small, light and high
performance electronic products [1–3]. Surface-mount-device-on-flex, chip-on-flex and flip-chip-on-flex are
becoming commercially mature technologies. However, the compliant nature of the flexible circuit board
poses significant technical challenges to the standard surface mount technology. One of the issues is the
vibration of such flexible circuits. The resonant vibration causes damage to the components on the board and
produces undesirable noise. To develop techniques for vibration control, dynamic characteristics of such
flexible circuit boards must be understood when they are subjected to large static deflection. This calls for the
study of vibration of plates and beams subjected to large static deflection.

Based on the classical Kirchhoff theory [4], vibrations of straight beams and flat plates are well understood.
The vibration of curved beams, rings and arches has also been the subject of numerous investigations. For
example, Chen [5], Petyt and Fleischer [6], and Markus and Nanasi [7] studied the free vibration of curved
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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beams; Suzuki and Ishiyama [8] investigated the free vibration of curved bars; Laura and Maurizi [9]
developed techniques to analyze the vibration of arch-type structures. In a review paper by Chidamparam and
Leissa [10], the existing results for arches, circular and non-circular rings are summarized. Examples of recent
work in this area include the study of vibration of beams and helices with arbitrarily large uniform curvature
by Tarnopolskaya et al. [11], and the papers by Tseng and Lin on in-plan vibration of arches with variable
curvature [12,13].

Although there is a large body of literature on the vibration of curved beams, rings and arches, in these
studies it was assumed that the structure (beams, rings, arches) is free of stress in the initial stage (the
equilibrium configuration). The only stress induced in the structure is due to vibration. Such an assumption is
valid for many structural applications. However, there is a class of applications, such as the flexible printed
circuit boards (PCB) mentioned earlier, where the vibration is superimposed on a statically deformed
structure. Therefore, the vibration characteristics of the structure are strongly influenced by the existing stress
induced by the static deformation. This effect becomes even more pronounced if the static deformation is
large. Unfortunately, studies on the vibrational motion of a beam subjected to large static deformation do not
seem to exist.

In this paper, we focus on the free vibration of a beam subjected to a large static deflection. The general
equations of motion for such a beam are derived first. Under the assumption that the amplitude of vibration is
much smaller than the static deflection, the nonlinear equations of motion are decomposed into a set of
nonlinear differential equations for the static deformation and a set of linear differential equations for the
vibration. The coefficients of the linear vibration equations involve the solution to the nonlinear static
equation, which are solved by using the method developed in Xue et al. [14]. The linear vibration equations are
expressed in terms of the local displacements in the directions that are axial and transverse to the statically
deformed beam. By expanding the displacements in a power series of the Lagrange coordinates along the
initial beam length, solutions to the linear vibration equations are obtained. Coefficients of the power series
can be constructed recursively once the initial conditions are given. The natural frequencies are determined
through a 3� 3 eigenvalue problem that depends on the type of boundary conditions.

Flexible PCB are typically attached to the casing of the electronic system either by fasteners or sockets.
A commonly encountered configuration is a flexible printed circuit board with each end plugged into a socket
affixed to the casing. The sockets are typically not on the same plane. This induces static bending of the
printed circuit board. To prevent damage to the on-board circuits and electronic components, the positions
and the length of the printed circuit board are designed such that it is not being structured when installed.
This situation is idealized into a cantilever beam subjected to a prescribed deflection and rotation at its
‘‘free’’ end, as schematically illustrated in Fig. 1. Using the general solution method derived in the first part
of this paper, this problem is solved numerically. Solutions that yield the first three natural frequencies and
the corresponding vibration modes are presented. The veering phenomenon [15–17], first observed in the
vibration modes of plates and membranes [15], where two natural frequencies become very close at certain
point (or over certain region), but never cross over each other while the corresponding vibration modes change
drastically near the veering loci, was found to occur at certain specific shapes of the static deformation.
Comparisons are made between statically deformed beams and naturally curved beams that have the same
initial shape.
Y0
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Fig. 1. A cantilever beam with prescribed deflection and rotation at its ‘‘free’’ end.
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2. Equations of motion

With reference to Fig. 2 first, consider a fixed Cartesian coordinate system ðx̄; ȳÞ. The position of a generic
point on the neutral axis of the beam can then be indicated by its coordinates. Let (X, Y) be the coordinates of
a point on the neutral axis of the beam in the initial (undeformed) state. Assume that, after deformation, this
same point has moved to a new location with coordinates (x, y). If S is used to represent the arc-length of the
neutral axis of the beam in the initial state, then, these two sets of coordinates are related by

xðS; tÞ ¼ X ðSÞ þ uðS; tÞ; yðS; tÞ ¼ Y ðSÞ þ vðS; tÞ, (1)

where u and v are the displacement components in the x̄-direction and the ȳ-direction, respectively. Obviously,
for an initially straight beam, the undeformed neutral axis of the beam is described by X ¼ S and Y ¼ 0.

Next, assume that the beam is subjected to a system of distributed loads qx, qy and m. Here, qx and qy are in
the x̄ and the ȳ direction, respectively, with the dimension of force per unit length of the beam’s neutral axis in
the initial state, while m is the moment per unit length of the beam’s neutral axis in the initial state.

In addition to the applied loads, the inertial forces in the x̄ and the ȳ directions are given, respectively, by

�rA
q2xðS; tÞ

qt2
dS; �rA

q2yðS; tÞ
qt2

dS. (2)

The inertial moment is given by

�rAJ
q2yðS; tÞ

qt2
dS. (3)

In Eqs. (2) and (3), r is the mass density per unit (initial) volume, A the cross-section area, and J the
moment of inertia of the beam cross-section about the neutral axis of the beam. For a rectangular cross-
section beam of height h,

J ¼
dS2 þ h2

12
dS. (4)

It is seen that the inertial moment term in Eq. (3) is much smaller than the other terms. In the rest of this
paper, it will be neglected.

Equilibrium of all the forces and moments on the element dS yields

qN

qS
¼ �r

q2xðS; tÞ
qt2

� qx;
qV

qS
¼ r

q2yðS; tÞ

qt2
� qy, (5)

qM

qS
¼ �V

qx

qS
þN

qy

qS
, (6)

where N, V and M are, respectively, the components of the internal forces and bending moment as labeled
in Fig. 3.
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Fig. 2. Deformed and natural configuration of the beam.
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Fig. 3. Free-body diagram of a length element in the deformed configuration.
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Deformation of the beam consists of two contributions. One is the axial strain of the neutral axis
described by

� ¼
qs� qS

qS
¼

qs

qS
� 1; � ¼

ds� dS

dS
. (7)

The other contribution comes from the rotation of the beam cross-section described by the angle ymeasured
from the x̄-axis to the neutral axis in the deformed configuration, as shown in Fig. 1. Therefore, a simple
geometry analysis in conjunction with Eq. (7) yields the strain and displacement relationships

qx

qS
¼ ð1þ �Þ cos y;

qy

qS
¼ ð1þ �Þ sin y. (8)

Substituting Eq. (8) into Eq. (6) yields

qM

qS
¼ ð1þ �ÞðN sin y� V cos yÞ. (9)

The constitutive equations that connect the internal forces (N, V, M) and the deformation descriptors (e,y)
are obtained by using the Hooke’s law for linear elastic materials

N cos yþ V sin y ¼ EA�; M ¼ EI
qy
qS

, (10)

where E is the Young’s modulus, and I the bending moment of inertia, I ¼ bh3/12 with b being the width and h

being the height of the beam.
By combining Eqs. (9) and (10), one can solve for N and V,

N ¼ EA� cos yþ EI
d2y

dS2

sin y
1þ �

, (11)

V ¼ EA� sin y� EI
d2y
dS

cos y
1þ �

. (12)

Substitution of Eqs. (11) and (12) into Eq. (5) yields a pair of second-order nonlinear differential equations

q
qS

EA� cos yþ EI
q2y

qS2

sin y
1þ �

� �
¼ rA

q2x
qt2
� qx, (13)

q
qS

EA� sin y� EI
q2y

qS2

cos y
1þ �

� �
¼ rA

q2y
qt2
� qy. (14)

Eqs. (8), (13) and (14) provide a system of four differential equations for the four unknowns, e(S,t), y(S,t),
x(S,t) and y(S,t). These equations are valid for S between 0 and L, the initial (undeformed) beam length.



ARTICLE IN PRESS
M.-B. Cornil et al. / Journal of Sound and Vibration 303 (2007) 723–740 727
3. Dynamic solution

To obtain the solution to the vibration problem defined by Eqs. (8), (13) and (14), we represent the solutions
to �ðS; tÞ, yðS; tÞ, xðS; tÞ and yðS; tÞ by

� ¼ �0ðSÞ þ �1ðS; tÞ; y ¼ y0ðSÞ þ y1ðS; tÞ, (15)

x ¼ x0ðSÞ þ x1ðS; tÞ; y ¼ y0ðSÞ þ y1ðS; tÞ, (16)

where the quantities with a subscript 0 are the solution to the static deformation, and the quantities with a
subscript 1 represent the small oscillations of the beam in the neighborhood of the static deformation (see
Fig. 4). The static deformation was solved by Xue et al. [14]. So, in this paper, we assume that e0, y0, x0 and y0
are known, and will focus on obtaining e1, y1 x1 and y1.

To this end, we first substitute Eqs. (15) and (16) into Eq. (8) to obtain

y1 ¼
1

1þ �0
�
qx1

qs
sin y0 þ

qy1

qs
cos y0

� �
; �1 ¼

qx1

qs
cos y0 þ

qy1

qs
sin y0. (17)

Then, by making use of Eqs. (15) and (17), the equations of motion, Eqs. (13) and (14), can be recast into a
pair of fourth-order differential equations for e1, y1 x1 and y1,

q
qS

EI sin y0
1þ �0

q2y1
qS2
þ �EA�0 sin y0 þ EI

cos y0
1þ �0

d2y0
dS2

� �
y1

�

þ EA cos y0 � EI
sin y0
ð1þ �0Þ

2

d2y0
dS2

� �
�1

�
¼ rA

q2x1

qt2
ð18Þ

and

q
qS
�

EI cos y0
1þ �0

q2y1
qS2
þ EA�0 cos y0 þ EI

sin y0
1þ �0

d2y0
dS2

� �
y1

�

þ EA sin y0 þ EI
cos y0
ð1þ �0Þ

2

d2y0
dS2

� �
�1

�
¼ rA

q2y1

qt2
. ð19Þ

Finally, consider the boundary conditions. Since the static solution satisfies the inhomogeneous boundary
conditions, the dynamic part of the solution only needs to satisfy the homogeneous boundary conditions

x1ð0; tÞ ¼ yð0; tÞ ¼
qx1ðs; tÞ

qs

����
s¼0

¼
qy1ðs; tÞ

qs

����
s¼0

¼ 0, (20)

x1ðL; tÞ ¼ y1ðL; tÞ ¼
qx1ðs; tÞ

qs

����
s¼L

¼
qy1ðs; tÞ

qs

����
s¼L

¼ 0. (21)

Eqs. (17)–(19) provide the governing equations and boundary conditions for the four unknowns e1, y1 x1

and y1. To reduce these equations to a form convenient for solution, let us introduce the axial and transverse
(x1,y1)

(x0,y0)

Fig. 4. Small amplitude oscillation about the deformed beam. The solid line is the statically deformed shape of the beam and the dashed

line represents the vibration.
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displacements u and v, respectively, through

u ¼ x1 cos y0 þ y1 sin y0; v ¼ �x1 sin y0 þ y1 cos y0. (22)

After some algebra, see Appendix A, we can reduce Eqs. (17)–(19) into a pair of fourth-order differential
equations for the displacements u and v,

X2
n¼0

AnLn d
nu

dSn þ
X3
n¼0

BnLn d
nv

dSn ¼
rL2

E

q2u

qt2
, (23)

X4
n¼0

CnLn d
nv

dSn þ
X3
n¼0

DnLn d
nu

dSn ¼
rL2

E

q2v

qt2
, (24)

where the coefficients An, Bn, Cn and Dn are functions of the static deflection, as well as the geometry and
material properties of the beam. The full expressions are given in Appendix B.

In the case of time-harmonic vibration, one may assume

u ¼ ūðS̄Þ expðiotÞ; v ¼ v̄ðS̄Þ expðiotÞ;S ¼ S̄L. (25)

Then, Eqs. (23) and (24) can be recast into

X2
n¼0

An

dnū

dS̄
n þ

X3
n¼0

Bn

dnv̄

dS̄
n þ a2ū ¼ 0, (26)

X4
n¼0

Cn

dnv̄

dS̄
n þ

X3
n¼0

Dn

dnū

dS̄
n þ a2v̄ ¼ 0, (27)

where

a2 ¼
rL2o2

E
or o ¼ a

ffiffiffiffiffiffiffiffi
E

rL2

s
. (28)

The boundary conditions are

ūð0Þ ¼ v̄ð0Þ ¼ v̄0ð0Þ ¼ ūð1Þ ¼ v̄ð1Þ ¼ v̄0ð1Þ ¼ 0. (29)

4. Numerical solution procedure

In what follows, we develop a numerical method to solve the governing equations, Eqs. (26) and (27) with
the boundary condition Eq. (29). The first step is to expand formally the unknown displacements into power
series of S̄ ,

ū ¼
X1
n¼0

ūnS̄
n
; v̄ ¼

X1
n¼0

v̄nS̄
n
, (30)

where ūn and v̄n are constants to be determined. Similarly, one can expand the coefficients An, Bn, Cn and Dn

into power series:

Am ¼
X1
n¼0

AðmÞn S̄
n
;Bm ¼

X1
n¼0

BðmÞn S̄
n
;Cm ¼

X1
n¼0

CðmÞn S̄
n
;Dm ¼

X1
n¼0

DðmÞn S̄
n
, (31)

where the constant coefficients AðmÞn , BðmÞn , CðmÞn and DðmÞn are known because An, Bn, Cn and Dn are known. Note
that

ū00 ¼
X1
n¼2

ūnnðn� 1ÞS̄
n�2
¼
X1
n¼0

ūnþ2ðnþ 2Þðnþ 1ÞS̄
n
, (32)



ARTICLE IN PRESS
M.-B. Cornil et al. / Journal of Sound and Vibration 303 (2007) 723–740 729
A2ū
00 ¼

X1
n¼0

Að2Þn S̄
n

 ! X1
n¼0

ūnþ2ðnþ 2Þðnþ 1ÞS̄
n

 !

¼
X1

n

Xn

m¼0

Að2Þn�mūmþ2ðmþ 2Þðmþ 1Þ

" #
S̄

n
. ð33Þ

Therefore, by substituting Eqs. (30) and (31) into Eqs. (26) and (27), we arrive at a pair of algebraic
equations for the unknown constants ūn and v̄n:

Pn þ a2ūn ¼ 0; Qn þ a2v̄n ¼ 0 for n ¼ 0; 1; . . .1, (34)

where the expressions of Pn and Qn are given in Appendix C.
Eq. (34) can be solved in a recursive manner, so that all the unknown coefficients ūn and v̄n can be obtained

in terms of six constants

w ¼ ðū0; v̄0; v̄1; ū1; v̄2; v̄3Þ
T. (35)

To this end, let us first consider P0 þ a2ū0 ¼ 0, i.e.,

2A
ð2Þ
0 ū2 þ A

ð1Þ
0 ū1 þ A

ð0Þ
0 ū0 þ 6B

ð3Þ
0 v̄3 þ 2B

ð2Þ
0 v̄2 þ B

ð1Þ
0 v̄1 þ B

ð0Þ
0 v̄0 þ a2ū0 ¼ 0. (36)

It can be seen from Appendix B that A
ð2Þ
0 a0. Therefore, ū2 can be solved from the above in terms of w.

Next, consider

P1 þ a2ū1 ¼ 0; Q0 þ a2v̄0 ¼ 0. (37)

From the expressions of Pn and Qn it can be seen that Eq. (37) is a pair of equations for ū3 and v̄4. Also,
Pn þ a2ūn ¼ 0 and Qn þ a2v̄n ¼ 0 for nX1 yields a pair of equations for ūnþ2 and v̄nþ3:

ðnþ 2Þðnþ 1ÞA
ð2Þ
0 ūnþ2 þ ðnþ 3Þðnþ 2Þðnþ 1ÞB

ð3Þ
0 v̄nþ3 ¼ pn, (38)

ðnþ 2Þðnþ 1ÞnD
ð3Þ
0 ūnþ2 þ ðnþ 3Þðnþ 2Þðnþ 1ÞnC

ð4Þ
0 v̄nþ3 ¼ qn�1, (39)

where

pn ¼ �
Xn�1
m¼0

fAð2Þn�mūmþ2ðmþ 2Þðmþ 1Þ þ Bð3Þn�mv̄mþ3ðmþ 3Þðmþ 2Þðmþ 1Þg

�
Xn

m¼0

fAð1Þn�mūmþ1ðmþ 1Þ þ Að0Þn�mūm þ Bð2Þn�mv̄mþ2ðmþ 2Þðmþ 1Þ

þ Bð1Þn�mv̄mþ1ðmþ 1Þ þ Bð0Þn�mv̄mg � a2ūn for nX1, ð40Þ

q0 ¼ �ð2D
ð2Þ
0 ū2 þD

ð1Þ
0 ū1 þD

ð0Þ
0 ū0 þ 6C

ð3Þ
0 v̄3 þ 2C

ð2Þ
0 v̄2 þ C

ð1Þ
0 v̄1 þ C

ð0Þ
0 v̄0 þ a2v̄0Þ,

qn ¼ �
Xn�1
m¼0

fDð3Þn�mūmþ3ðmþ 3Þðmþ 2Þðmþ 1Þ þ Cð4Þn�mv̄mþ4ðmþ 4Þðmþ 3Þðmþ 2Þðmþ 1Þg

�
Xn

m¼0

fDð2Þn�mūmþ2ðmþ 2Þðmþ 1Þ þDð1Þn�mūmþ1ðmþ 1Þ þDð0Þn�mūm

þ Cð3Þn�mv̄mþ3ðmþ 3Þðmþ 2Þðmþ 1Þ þ Cð2Þn�mv̄mþ2ðmþ 2Þðmþ 1Þ

þ Cð1Þn�mv̄mþ1ðmþ 1Þ þ Cð0Þn�mv̄m

�
� a2v̄n�1 for nX1. ð41Þ
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It is noted that the right-hand sides of Eqs. (38) and (39) contain only terms up to ūnþ1 and v̄nþ2.
Furthermore, it is easy to show from the expressions given in Appendix B that

K �
A
ð2Þ
0 B

ð3Þ
0

D
ð3Þ
0 C

ð4Þ
0

������
������ ¼ �

r2

12ð1þ �0Þ

����
S̄¼0

a0. (42)

Therefore, ūnþ2 and v̄nþ3 can be solved from Eqs. (38) and (39),

ūnþ2 ¼
C
ð4Þ
0 npn � B

ð3Þ
0 qn�1

ðnþ 2Þðnþ 1ÞnK
; v̄nþ3 ¼

A
ð2Þ
0 qn�1 �D

ð3Þ
0 npn

ðnþ 3Þðnþ 2Þðnþ 1ÞnK
; nX1. (43)

Once the coefficients ūn and v̄n are obtained, the displacements can be computed from Eq. (30). The
coefficients ūn and v̄n depend on the choice of w ¼ ðū0; v̄0; v̄1; ū1; v̄2; v̄3Þ

T. Using wð1Þ ¼ ð1; 0; 0; 0; 0; 0ÞT,
wð2Þ ¼ ð0; 1; 0; 0; 0; 0ÞT, etc., one obtains six solutions ūðkÞ and v̄ðkÞ (k ¼ 1, 2,y,6), which are also functions of a,

ūðkÞðS; aÞ ¼
X1
n¼0

ūðkÞn S̄
n
; v̄ðkÞðS; aÞ ¼

X1
n¼0

v̄ðkÞn S̄
n
. (44)

Clearly, we have

ūðkÞð0; aÞ ¼ dk1; v̄ðkÞð0; aÞ ¼ dk2;
dv̄ðkÞ

dS

����
S¼0

¼ dk3, (45)

where dij is the Kronecker delta.
The general solution to Eqs. (26) and (27) can then be expressed as

ūðS; aÞ ¼
X6
k¼1

ckūðkÞðS; aÞ; v̄ðS; aÞ ¼
X6
k¼1

ckv̄ðkÞðS; aÞ, (46)

where c ¼ ðc1; c2; c3; c4; c5; c6Þ
T are constants to be determined from the boundary conditions Eq. (29), in

conjunction with Eq. (45),

I 0

FðaÞ GðaÞ

" #
c ¼ 0, (47)

where I is a 3� 3 identity matrix and

FðaÞ ¼

ūð1Þð1; aÞ ūð2Þð1; aÞ ūð3Þð1; aÞ

v̄ð1Þð1; aÞ v̄ð2Þð1; aÞ v̄ð3Þð1; aÞ

dv̄ð1ÞðS; aÞ
dS

����
S¼1

dv̄ð2ÞðS; aÞ
dS

����
S¼1

dv̄ð3ÞðS; aÞ
dS

����
S¼1

2
66664

3
77775, (48)

GðaÞ ¼

ūð4Þð1; aÞ ūð5Þð1; aÞ ūð6Þð1; aÞ

v̄ð4Þð1; aÞ v̄ð5Þð1; aÞ v̄ð6Þð1; aÞ

dv̄ð4ÞðS; aÞ
dS

����
S¼1

dv̄ð5ÞðS; aÞ
dS

����
S¼1

dv̄ð6ÞðS; aÞ
dS

����
S¼1

2
66664

3
77775. (49)

In Eq. (47) are six homogeneous equations for an. For non-trivial solution, the determinant must
vanish, i.e.,

DðaÞ ¼ jjGðaÞjj ¼ 0. (50)
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Let the roots of the above characteristic equation be an. Then, the natural frequencies of the beam are given
by Eq. (28),

on ¼ an

ffiffiffiffiffiffiffiffi
E

rL2

s
. (51)

The corresponding modes are obtained from Eqs. (47) and (46), namely,

ūðS; anÞ ¼
X6
k¼4

ckūðkÞðS; anÞ; v̄ðS; anÞ ¼
X6
k¼4

ckv̄ðkÞðS; anÞ, (52)

where the constants cn satisfy

GðanÞ

c4

c5

c6

2
64

3
75 ¼ 0. (53)

5. Numerical examples

In this section, we consider a cantilever beam with prescribed deflection and rotation at its ‘‘free’’ end, see
Fig. 1. It is assumed that the initial undeformed beam is a straight beam of length L. Under a concentrated
load T, the free end of the beam will come into contact with a fixed rigid surface given by

ȳ ¼ x̄ tan yf þ Y 0; 0pyf pp. (54)

where yf and Y0 are given parameters to describe the surface. Furthermore, it is assumed that the concentrated
force T is, at the final deformed configuration, perpendicular to the surface described by Eq. (54). Note that T

is an unknown to be solved from the boundary value problem. To further simplify this problem, we assume
that the axial strain in the static deformation is negligible, i.e., �0 ¼ 0. This assumption was shown to involve
little error [14]. Under these assumptions, the boundary conditions for the statically deformed beam are

y0ð0Þ ¼ 0; y0ðLÞ ¼ yf , (55)

y0ð0Þ ¼ x0ð0Þ ¼ 0; y0ðLÞ ¼ x0ðLÞ tan yf þ Y 0. (56)

The parametric equations of the static deflection curve are

x0ðfÞ ¼ L½x̂0ðk; p;fÞ � x̂0ðk; p;f0Þ�, (57)

y0ðfÞ ¼ L½ŷ0ðk; p;fÞ � ŷ0ðk; p;f0Þ�, (58)

where

x̂0ðk; p;fÞ ¼ �
2p

k
cos yf cos fþ

1

k
sin yf 2Eðp;fÞ � F ðp;fÞ½ �, (59)

ŷ0ðk; p;fÞ ¼ �
1

k
cos yf ½2Eðp;fÞ � F ðp;fÞ� �

2p

k
sin yf cos f (60)

with F ðp;fÞ and Eðp;fÞ being the elliptical integrals of the first and second kinds, respectively,

F ðp;fÞ ¼
Z f

0

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2 sin2 z

q ; Eðp;fÞ ¼
Z f

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2 sin2 z

q
dz.

The intermediate variable f in the above parametric equations is related to the length variable S through

S ¼
L

k

Z f

f0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2sin2 t

q , (61)
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where

f0 ¼ sin�1
sinð�yf =2þ p=4Þ

p

� �
. (62)

In terms of the Jacobi Amplitude function am(p,q), Eq. (61) can also be written as f ¼
amðp; kS=pþ F ðp;f0ÞÞ.

The constants k and p in the above equations are determined through the following algebraic equations:

k ¼

Z fL

f0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2 sin2 f

q df, (63)

2

k

Z fL

f0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2 sin2 t

q
dt ¼ 1�

Y 0

L
cos yf , (64)

where

fL ¼ p� sin�1
sinðp=4Þ

p

� �
. (65)

Note that tan y0 ¼ dy0=dx0. It then follows from Eqs. (57) and (58) that

y00 ¼
dy0
dS
¼

dy0
df

df
dS
¼

2kp

L
cos f. (66)

Higher derivatives y000, y
000
0 and y00000 can thus be obtained analytically as functions of f,

y000 ¼ �
2k2p

L2
sin f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2 sin2 f

q
, (67)

y0000 ¼
2k3p

L3
cos fð2p2 sin2 f� 1Þ, (68)

y00000 ¼
1

L4
½2k4pð1þ p2 þ 3p2 cos 2fÞ sinf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2 sin2 f

q
�. (69)

Since f is related to S through Eq. (61), one can then evaluate the coefficients given in Appendix A as
functions of S.

Numerical examples are conducted for several cases to investigate the effects of the geometrical parameters,
Y 0, yf and r on the vibration characteristics. The solution procedure consists of:
(1)
 Compute the static deformation, see [14], to obtain y0ðSÞ.

(2)
 Make use of Eqs. (61)–(69) to compute the derivatives of y0ðSÞ as function of S.

(3)
 Substitute the known derivatives of y0ðSÞ into the expressions in Appendix B.

(4)
 Compute the coefficients, AðmÞn , BðmÞn ,CðmÞn and DðmÞn . This was done by a curve fitting technique using

MatLab (�0 ¼ 0 is assumed in the numerical examples presented here).

(5)
 Substitute these coefficients into Eq. (43) to obtain ūðkÞn and v̄ðkÞn (k ¼ 1, 2,y,6) by using six different

boundary conditions, wð1Þ ¼ ð1; 0; 0; 0; 0; 0ÞT, wð2Þ ¼ ð0; 1; 0; 0; 0; 0ÞT, y.

(6)
 Construct the matrix GðaÞ according to Eq. (49).

(7)
 Solve Eq. (50) to obtain the natural frequencies.

(8)
 Solve Eq. (47) to obtain the corresponding eigenvectors c.

(9)
 Substitute c into Eq. (46) to obtain the mode shape.
First, consider that case where Y 0=L ¼ 0:2, r ¼ h=L ¼ 0:06 and yf varies from 01 to 1201. The
corresponding first three natural frequencies are shown in Fig. 5. It is seen that the frequencies of the
second and third modes approach each other around yf ¼ 60�. Very careful examination near that region
shows that these two natural frequencies never actually cross each other. But, it can be seen from Figs. 6 and 7,
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Fig. 5. The first three natural frequencies as a function of yf for Y 0=L ¼ 0:2, r ¼ h=L ¼ 0:06.K, the first natural frequency; J, the second

natural frequency; and ., the third natural frequency.
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Fig. 6. The second mode of vibration for Y 0=L ¼ 0:2, r ¼ h=L ¼ 0:06 and (a) yf ¼ 50�, (b) yf ¼ 55�, (c) yf ¼ 60�, and (d) yf ¼ 65�. The

solid lines are for the initial statically deformed shape, and the dashed lines are the vibration mode shape.
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that the corresponding modes do change drastically. The mode corresponding to the second natural frequency
has two ‘lobes’ for yf o55� and changes to three lobes for yf 460�, while the third mode has three lobes
for yf o55� and changes to two lobes for yf 460�. This is similar to the ‘veering’ phenomenon discussed in
Refs. [15–17].

The effect of Y 0 on the natural frequencies is shown in Fig. 8, where the first three natural frequencies
corresponding to yf ¼ 30�, r ¼ h=L ¼ 0:06 are shown for Y 0=L varying from 0.2 to 0.6. The veering
phenomenon discussed in the previous paragraph is also observed here. To see how the beam thickness affects
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Fig. 7. The third mode of vibration for Y 0=L ¼ 0:2, r ¼ h=L ¼ 0:06 and (a) yf ¼ 50�, (b) yf ¼ 55�, (c) yf ¼ 60�, and (d) yf ¼ 65�. The

solid lines are for the initial statically deformed shape, and the dashed lines are the vibration mode shape.
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Fig. 8. The first three natural frequencies as function of Y 0=L for yf ¼ 30�, r ¼ h=L ¼ 0:06.K, the first natural frequency; J, the second

natural frequency; and ., the third natural frequency.
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the natural frequencies, numerical solutions for Y 0=L ¼ 0:2, yf ¼ 9� were carried out for r ¼ h=L varying
from 0.04 to 0.08. The corresponding first three natural frequencies are shown in Fig. 9. As expected, the
natural frequencies increase with increasing beam thickness.

An interesting comparison can be made between an initially straight beam that has been deformed by a
static force and a beam with initial shape identical to the statically deformed beam. Obviously, the major
difference between these two beams is that at the initial state the statically deformed beam has internal stresses,
while the naturally curved beam is stress free. The vibration characteristics are certainly affected by the initial
stresses. Intuitively, one would expect that the initially stressed beam would have higher natural frequencies.
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Fig. 9. Natural frequencies as a function of beam thickness: K, the first natural frequency; J, second natural frequency; and ., the third

natural frequency.
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Fig. 10. The first natural frequency of the statically deformed beam (K) and the naturally curved beam (J).
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Fig. 11. The second natural frequency of the statically deformed beam (K) and the naturally curved beam (J).
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However, from numerical results seem it was concluded that this is not always the case. Shown in Figs. 10–12
are the first three natural frequencies for these two cases for Y 0=L ¼ 0:2, r ¼ h=L ¼ 0:06 and yf varying from
01 to 1201. The boundary conditions used for both types of beams are the same, namely, the ‘‘fixed’’ end
(S ¼ 0) is rigidly clamped to the vertical wall while the ‘‘free’’ end (S ¼ L) is constrained to be touching the
inclined surface, but is free to move along the surface. The method used to compute the natural frequencies of
such a naturally curved beam was taken from Ref. [18]. It is seen that the frequencies of the naturally curved
beams is higher first and third modes are higher, while the frequency of the deformed beams second mode is
higher. Although no definitive trend is found, from careful examination of the natural frequency behavior it
was found that if the vibration modes of the statistically deformed beam are closer to the static deformation,
their natural frequencies tend to be lower. On the other hand, if the vibration modes of the statistically
deformed beam are very different from the static deformation, their natural frequencies tend to be higher.

6. Summary and concluding remarks

In this paper, the vibration characteristics of an initially straight beam under large static deflection were
investigated. The general equations of motion for a beam subjected to large deflection were derived first.
Under the assumption that the amplitude of vibration is much smaller than the static deflection, the nonlinear
equations of motion were decomposed into a set of nonlinear differential equations for the static deformation
and a set of linear differential equations for the vibration. The coefficients of the linear vibration equations
involve the solution to the nonlinear static equation, which were solved by using a method described in
Ref. [14]. The linear vibration equation was solved by using the method involving power-series expansions.

Numerical examples were given of cantilever beams subjected to a static concentrated force at the free end.
Solutions to the first three natural frequencies and the corresponding vibration modes were presented. The
well-known veering phenomenon was found to exist in such beams. Comparison was made between the
natural frequencies of the statically deformed beams and the naturally curved beams that have a same initial
shape. Intuitively, one would think that the statically deformed beam has been ‘‘pre-stressed’’, and thus may
be more ‘‘rigid’’. Consequently, the statically (or pre-stressed) beam may have higher natural frequencies. Our
numerical results show that two such beams of the same initial shape do indeed have different natural
frequencies. However, it is found that the statically deformed beams may not always have higher natural
frequencies. Although there does not seem to be a general trend in whether the statically deformed beam will
have higher or lower natural frequencies than a naturally curved beam of the same shape, it seems from the
numerical results that for the vibration modes that are closer to the static deformation, their natural
frequencies become somewhat lower, while for the vibration modes that are very different from the static
deformation, the natural frequencies become higher.
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The method developed in this paper for analyzing the vibration of a beam under large static deflection has
several advantages. To the authors’ knowledge, this is the first attempt to solve such a problem. The solution
for the natural frequency involves solving a 3� 3 eigenvalue problem. Once the eigenvalue and corresponding
eigenvectors are found numerically, the displacements (modes) are given analytically.
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Appendix A. Displacement equations of motion

Eq. (22) can be converted to

x1 ¼ u cos y0 � v sin y0; y1 ¼ u sin y0 þ v cos y0. (A.1)

It thus follows from Eq. (A.1) that

dx1

dS
¼ ðu0 � vy00Þ cos y0 � ðuy

0
0 þ v0Þ sin y0, (A.2)

dy1

dS
¼ ðu0 � vy00Þ sin y0 þ ðuy

0
0 þ v0Þ cos y0. (A.3)

Consequently, it follows from Eq. (8) that

y1ð1þ �0Þ ¼ �
dx1

dS
sin y0 þ

dy1

dS
cos y0 ¼ uy00 þ v0 (A.4)

and

�1 ¼
dx1

dS
cos y0 þ

dy1

dS
sin y0 ¼ u0 � vy00. (A.5)

Note that

r
q2x1

qt2
cos y0 þ

q2y1

qt2
sin y0

	 

¼ r

q2u
qt2

; r �
q2x1

qt2
sin y0 þ

q2y1

qt2
cos y0

	 

¼ r

q2v

qt2
. (A.6)

Therefore, by multiplying Eq. (18) by cos y0 and Eq. (19) by sin y0, and by adding the two equations so
modified, one obtains

EI
y00

1þ �0
y001 � EA�0y

0
0y1 þ EI

y000y1
1þ �0

	 
0
þ EA�01 � EI

y00y
00
0

ð1þ �0Þ
2
�1 ¼ rA €u. (A.7)

Similarly, by multiplying Eq. (18) by � sin y0 and Eq. (19) by cos y0, and by adding the two equations so
modified, one obtains

�EI
y001

1þ �0

	 
0
þ EAð�0y1Þ

0
þ EI

y000y1y
0
0

1þ �0
þ EA�1y

0
0 þ EI

y000�1
ð1þ �0Þ

2

	 
0
¼ rA€v. (A.8)

Substitution of Eqs. (A.4) and (A.5) into Eq. (A.6) yields a second-order ordinary differential equation for
u. Similarly, substitution of Eqs. (A.4) and (A.5) into Eq. (A.7) yields a fourth-order ordinary differential
equation for v. They are

X2
n¼0

AnLn dnu

dSn þ
X3
n¼0

BnLn dnv

dSn ¼
rL2 €u

E
, (A.9)
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X4
n¼0

CnLn dnv

dSn þ
X3
n¼0

DnLn dnu

dSn ¼
rL2 €v

E
, (A.10)

where the constants An, Bn, Cn and Dn are functions of the static deflection, as well as the geometry and
material properties of the beam. Their expressions are given in Appendix B.

Appendix B. Expressions forAn, Bn, Cn and Dn

A2 ¼ 1þ
r2L2

12

y00
1þ �0

	 
2

, (B.1)

A1 ¼
L3r2

12

y00
1þ �0

	 
2
" #0

¼
L3r2y00

6ð1þ �0Þ
2

y000 �
y00�
0
0

ð1þ �0Þ

� �
, (B.2)

A0 ¼ � L2 ðy
0
0Þ

2�0
1þ �0

þ
L4r2

12

y00
1þ �0

y00
1þ �0

	 
00
þ

L4r2

12

y00y
00
0

ð1þ �0Þ
2

	 
0

¼
L4r2ð�00y

0
0Þ

2

6ð1þ �0Þ
4
�

L4r2y00ðy
0
0�
00
0 þ 4�00y

00
0Þ

12ð1þ �0Þ
3

þ
L4r2 ðy000Þ

2
þ 2y00y

000
0

� �
12ð1þ �0Þ

2
�

L2ðy00Þ
2�0

1þ �0
, ðB:3Þ

B3 ¼
Lr2y00

12ð1þ �0Þ
2
, (B.4)

B2 ¼
�L2r2�00y

0
0

6ð1þ �0Þ
3
þ

L2r2y000
12ð1þ �0Þ

2
, (B.5)

B1 ¼
L3r2ð�00Þ

2y00
6ð1þ �0Þ

4
�

L3r2ð�000y
0
0 þ 2�00y

00
0Þ

12ð1þ �0Þ
3
þ

L3r2y0000
12ð1þ �0Þ

2
�

Lð1þ 2�0Þy
0
0

1þ �0
, (B.6)

B0 ¼ �L2y000 þ
L4r2

12

ðy00Þ
2y000

ð1þ �0Þ
2
, (B.7)

C4 ¼ �
r2

12ð1þ �0Þ
2
, (B.8)

C3 ¼
Lr2�00

3ð1þ �0Þ
3
, (B.9)

C2 ¼
�0

1þ �0
þ

r2L2

12ð1þ �0Þ
4
½3ð1þ �0Þ�

00
0 � 8ð�00Þ

2
�, (B.10)

C1 ¼
2L3r2ð�00Þ

3

3ð1þ �0Þ
5
�

7L3r2�00�
00
0

12ð1þ �0Þ
4
þ

L3r2�0000
12ð1þ �0Þ

3
þ

L�00
ð1þ �0Þ

2
, (B.11)

C0 ¼
L4r2�00y

0
0y
00
0

6ð1þ �0Þ
3
�

L4r2½ðy000Þ
2
þ y00y

000
0 �

12ð1þ �0Þ
2
� L2ðy00Þ

2, (B.12)

D3 ¼
�Lr2y00

12ð1þ �0Þ
2
, (B.13)



ARTICLE IN PRESS
M.-B. Cornil et al. / Journal of Sound and Vibration 303 (2007) 723–740 739
D2 ¼
r2L2�00y

0
0

3ð1þ �0Þ
3
�

r2L2y000
6ð1þ �0Þ

2
, (B.14)

D1 ¼ �
2L3r2ð�00Þ

2y00
3ð1þ �0Þ

4
þ

L3r2ðy00�
00
0 þ 2y000�

0
0Þ

4ð1þ �0Þ
3

�
L3r2y0000

6ð1þ �0Þ
2
þ

Lð1þ 2�0Þy
0
0

1þ �0
, (B.15)

D0 ¼
2L4r2ð�00Þ

3y00
3ð1þ �0Þ

5
�

L4r2�00ð7y
0
0�
00
0 þ 8�00y

00
0Þ

12ð1þ �0Þ
4

þ
L4r2ð�0000 y

0
0 þ 3�000y

00
0 þ 4�00y

000
0 Þ

12ð1þ �0Þ
3

þ
L4r2½ðy00Þ

2y000 � yð4Þ0 � þ 12L2�00y
0
0

12ð1þ �0Þ
2

þ
L2�0y

00
0

1þ �0
. ðB:16Þ

In the above,

r ¼
h

L
. (B.17)

Appendix C. Expressions of Pn and Qn

Pn ¼
Xn

m¼0

fAð2Þn�mūmþ2ðmþ 2Þðmþ 1Þ þ Að1Þn�mūmþ1ðmþ 1Þ þ Að0Þn�mūm

þ Bð3Þn�mv̄mþ3ðmþ 3Þðmþ 2Þðmþ 1Þ þ Bð2Þn�mv̄mþ2ðmþ 2Þðmþ 1Þ

þ Bð1Þn�mv̄mþ1ðmþ 1Þ þ Bð0Þn�mv̄mg, ðC:1Þ

Qn ¼
Xn

m¼0

fDð3Þn�mūmþ3ðmþ 3Þðmþ 2Þðmþ 1Þ þDð2Þn�mūmþ2ðmþ 2Þðmþ 1Þ

þDð1Þn�mūmþ1ðmþ 1Þ þDð0Þn�mūm þ Cð4Þn�mv̄mþ4ðmþ 4Þðmþ 3Þðmþ 2Þðmþ 1Þ

þ Cð3Þn�mv̄mþ3ðmþ 3Þðmþ 2Þðmþ 1Þ þ Cð2Þn�mv̄mþ2ðmþ 2Þðmþ 1Þ

þ Cð1Þn�mv̄mþ1ðmþ 1Þ þ Cð0Þn�mv̄mg. ðC:2Þ
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